Factoring Integers Using Elliptic Curves over Q

نویسندگان

  • XIUMEI LI
  • JINXIANG ZENG
  • LINSHENG YIN
چکیده

For the integer D = pq of the product of two distinct odd primes, we construct an elliptic curve E2rD : y 2 = x3 − 2rDx over Q, where r is a parameter dependent on the classes of p and q modulo 8, and show, under Birch and Swinnerton-Dyer conjecture, that the elliptic curve has rank one and vp(x([k]Q)) 6= vq(x([k]Q)) for odd k and a generator Q of the free part of E2rD(Q). Thus we can get p or q from D by computing GCD(D, x([k]Q)). Furthermore, under the Generalized Riemann hypothesis, we prove that one can take r < c logD such that the elliptic curve E2rD has these properties, where c is an absolute constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

New Families of ECM Curves for Cunningham Numbers

In this paper we study structures related to torsion of elliptic curves defined over number fields. The aim is to build families of elliptic curves more efficient to help factoring numbers of special form, including numbers from the Cunningham Project. We exhibit a family of curves with rational Z/4Z×Z/4Z torsion and positive rank over the field Q(ζ8) and a family of elliptic curves with ration...

متن کامل

Faster Factoring of Integers of a Special

A speedup of Lenstra's Elliptic Curve Method of factorization is presented. The speedup works for integers of the form N = P Q 2 , where P is a prime suuciently smaller than Q. The result is of interest to cryptographers, since integers with secret factorization of this form are being used in digital signatures. The algorithm makes use of what we call \Jacobi signatures". We believe these to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012